Solution Behaviour of Ni $(\eta^2$ -hex-1-ene){P(cyclo-hexyl)₃}₂ with Hex-1-ene, Studied by ³¹P NMR Spectroscopy

A. MUSCO*

Istituto di Chimica delle Macromolecule del C.N.R., Via A. Corti 12, 20133 Milan, Italy

I. GEORGII and B. E. MANN*

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

Received May 15, 1980

Bis- and mono-olefin nickel(0) complexes with tertiary phosphine, L, of the type $Ni(ol)_2L$ and $Ni(ol)L_2$ respectively are known [1]. The equilibrium has been extensively studied by Tolman and

$$NiL_3 + ol \rightleftharpoons Ni(ol)L_2 + L \tag{1}$$

coworkers for $L = PPh_3$ [2]. However, no evidence has yet been given for the occurrence of the equilibrium

$$Ni(ol)L_2 + ol \rightleftharpoons Ni(ol)_2L + L$$
(2)

when, with respect to equilibrium (1), a second molecule of tertiary phosphine is displaced by an olefin. Here, we give evidence for the occurrence of equilibrium (2) when ol = hex-1-ene and L = $P(cyclo-hexyl)_3$.

Three NMR samples were prepared and sealed into 10 mm NMR tubes under strictly anaerobic conditions, at 10⁻⁶ mm Hg. The first tube contained 20 mg (0.028 mmol) Ni(η^2 -hex-1-ene){P(cyclohexyl)_3}_2 [3] in 2 ml heptane/ d_{12} -cyclohexane. Only a ³¹P NMR signal due to Ni(η^2 -hex-1-ene){P(cyclohexyl)₃}₂ was observed at room temperature at δ 35.0 and at -80 °C. The second tube contained 20 mg (0.028 mmol) Ni(η^2 -hex-1-ene){P(cyclohexyl)₃}₂ and 30 μ l (0.24 mmol) hex-1-ene in 2 ml heptane/ d_{12} -cyclohexane. The ³¹P NMR spectrum at room temperature showed two signals of equal intensity at δ 4.7 and δ 39.7 in addition to that due to Ni(η^2 hex-1-ene){P(cyclohexyl)₃}₂ at δ 35.0. On cooling to -100 °C, there was an increase in the intensities of the signals at δ 4.7 and δ 39.7. The third sample contained 17.8 mg (0.025 mmol) Ni(η^2 -hex-1-ene) $\{P(cyclohexyl)_3\}_2$ and 80 μ l (0.64 mmol) hex-1-ene in 2 ml heptane/ d_{12} -cyclohexane. It gave 'a ³¹P NMR spectrum similar to that of the 30 μ l hex-1-ene containing sample except that the signals at δ 4.7 and δ 39.7 were more intense. The signal at δ 4.7 is close in chemical shift to that previously reported for P(cyclohexyl)₃ [4]. This implies that the signal, of equal intensity, at δ 39.7, is due to a complex containing only one P(cyclohexyl)₃ ligand. The concentration of the species giving the signal at δ 39.7 is first order in hex-1-ene concentration giving a composition Ni(η^2 -hex-1-ene)₂P(cyclohexyl)₃. The equilibrium constant for reaction (2) is 0.1 at room temperature and 0.18 at -100 °C showing that ΔH° for the equilibrium is very close to zero or that the equilibrium is very slowly obtained.

There are two unexpected observations about the ³¹P NMR spectra of the complexes. The ³¹P NMR spectra of $Pd(\eta^2$ -hex-1-ene){ $P(cyclohexyl)_3$ }₂ and $Pt(\eta^2$ -hex-1-ene){P(cyclohexyl)_3}_2 are AB at -100 °C (Pd) and 0 °C and below (Pt) [5]. For Pd(η^2 -hex-1-ene){P(cyclohexyl)₃}₂, the ³¹P NMR shifts are δ 34.2 and δ 31.9 with ²J(³¹P, ³¹P) = 38 Hz at -110 °C, while for $Pt(\eta^2-hex-1-ene)\{P(cyclohexyl)_3\}_2$, they are δ 41.2, ${}^{1}J({}^{195}Pt, {}^{31}P) = 3717$ Hz, and δ 38.8, ${}^{1}J({}^{195}Pt, {}^{31}P) = 3313$ Hz, with ${}^{2}J({}^{31}P, {}^{31}P) = 57$ Hz at -20 °C. In contrast the ³¹P NMR spectrum of Ni(η^2 -hex-1-ene){P(cyclohexyl)₃}₂ is a singlet even at -100 °C. It is possible that the singlet is due to rapid olefin exchange, olefin rotation, or accidental degeneracy. The X-ray structure of Ni $(\eta^2 - C_2 H_4)_2 P$ -(cyclohexyl)₃ shows a planar arrangement for the NiPC₄ skeleton [6]. In the case of Ni(η^2 -hex-1-ene)₂-P(cyclohexyl)₃, there are six isomers possible, ignoring the duplication of certain isomers due to optical activity. Only one major ³¹P NMR signal is observed with a weak ca. 5%, signal at δ 41.8. It therefore appears that only one of the possible isomers is significantly populated although it is possible that the signal at δ 41.8 is an impurity and the isomers are rapidly interconverting, even at -100 °C or are accidently degenerate.

Unlike the nickel case, no $M(\eta^2-hex-1-ene)_2$ -P(cyclohexyl)₃ was detected by ³¹P NMR for M = Pd and Pt by adding an excess of olefin to $M(\eta^2-hex-1-ene)$ {P(cyclohexyl)₃}₂. This is consistent with the known tendency of Ni(0) to form more stable olefin complexes than Pd(0) and Pt(0) [2].

Acknowledgements

This work is supported by NATO grant 1052 and the Italian CNR.

References

1 P. W. Jolly and G. Wilke, 'The Organic Chemistry of Nickel', Volume, 1, Academic Press, New York and London (1974).

^{*}Authors to whom correspondence should be addressed.

- 2 C. A. Tolman, W. C. Seidel and D. H. Gerlach, J.Am. Chem. Soc., 94, 2669 (1972).
- 3 This complex was prepared according to the method given by Jolly *et al.* for the preparation of Ni(η^2 -olefin) {P(cyclohexyl)_3}₂: P. W. Jolly, K. Jonas, C. Krüger and Y.-H. Tsay, J. Organometal. Chem., 33, 109 (1971).
- 4 S. O. Grim and W. McFarlane, Canad. J. Chem., 46, 2071 (1968).
 5 I. Georgii, B. E. Mann and A. Musco, unpublished
- 5 I. Georgii, B. E. Mann and A. Musco, unpublished results.
 6 C. Krüger and Y.-H. Tsay, J. Organometal. Chem., 34,
- 6 C. Krüger and Y.-H. Tsay, J. Organometal. Chem., 34, 387 (1972).