Solution Behaviour of Ni(\$-hex-l +mep(cyclo-Solution behaviour of $N(\eta^2 - nex - 1)$ energy cyclohexyl)₃ $\}2$ with Hex-1-ene, Studied by ^{31}P NMR
Spectroscopy

A. MUSCO*

Istituto di Chimica delle Macromolecule de1 C.N.R., Via A. Corti 12, 20133 Milan, Italy

I. GEORGII and B. E. MANN*

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

 $B = \frac{1}{2}$ μ bis- and mono-olein increasing complexes with tertiary phosphine, L, of the type $Ni(ol)_2L$ and $Ni(ol)L₂$ respectively are known $[1]$. The equilib-
rium has been extensively studied by Tolman and

$$
Nil3 + ol \rightleftharpoons Nil(ol)L2 + L
$$
 (1)

coworkers for L $_{2}$. However, no evidence $_{2}$. However, no evidence $_{2}$ coworkers for $L = \text{Prf}_3$ [2]. However, no evidence has yet been given for the occurrence of the equilib-
rium

$$
Ni(\text{ol})L_2 + \text{ol} \rightleftharpoons Ni(\text{ol})_2L + L \tag{2}
$$

when, with respect to equilibrium (l), a second to equilibrium (l), a second to equilibrium (l), a second to e when, with respect to equilibrium (1), a second molecule of tertiary phosphine is displaced by an olefin. Here, we give evidence for the occurrence of equilibrium (2) when ol = hex-1-ene and $L = P(cyclo - hexyl)_3$. Cyl_{3} .

1 nree NMR samples were prepared and sealed into 10 mm NMR tubes under strictly anaerobic conditions, at 10^{-6} mm Hg. The first tube contained 20 mg (0.028 mmol) Ni $(\eta^2$ -hex-1-ene) $\{P(cyclohexyl)_3\}$ [3] in 2 ml heptane/ d_{12} -cyclohexane. Only a ³¹P NMR signal due to $Ni(\eta^2$ -hex-1-ene) ${P(cyclohexyl)}_3$, was observed at room temperature at δ 35.0 and at -80 °C. The second tube contained 20 mg (0.028) mmol) Ni(η^2 -hex-1-ene) {P(cyclohexyl)₃}₂ and 30 μ l (0.24 mmol) hex-1-ene in 2 ml heptane/ d_{12} -cyclohexane. The $31P$ NMR spectrum at room temperature showed two signals of equal intensity at δ 4.7 and δ 39.7 in addition to that due to Ni(η^2 hex-1-ene) ${P(cyclohexvl)}_3$ at δ 35.0. On cooling to -100 °C, there was an increase in the intensities of the signals at δ 4.7 and δ 39.7. The third sample contained 17.8 mg (0.025 mmol) $Ni(\eta^2$ -hex-1-ene) ${P(cyclohexyl)_3}_2$ and 80 μ l (0.64 mmol) hex-1-ene. in 2 ml heptane/ d_{12} -cyclohexane. It gave a ³¹P NMR spectrum similar to that of the 30 μ l hex-1-ene containing sample except that the signals at δ 4.7 and δ 39.7 were more intense. The signal at δ 4.7 is close in chemical shift to that previously reported is close in chemical shift to that previously reported for $P(cyclohexyl)$, [4]. This implies that the signal, of equal intensity, at δ 39.7, is due to a complex containing only one $P(cyclohexyl)$, ligand. The concentration of the species giving the signal at δ 39.7 is first order in hex-1-ene concentration giving a composition $Ni(\eta^2$ -hex-1-ene)₂P(cyclohexyl)₃. The equilibrium constant for reaction (2) is 0.1 at room temperature and 0.18 at $-100\degree$ C showing that ΔH° for the equilibrium is very close to zero or that the equilibrium is very slowly obtained.

There are two unexpected observations about the $31P$ NMR spectra of the complexes. The $31P$ NMR spectra of $Pd(\eta^2-hex-1-ene)$ { $P(cyclohexy1)_3$ }₂ and $Pt(\eta^2-hex-1-ene)$ { $P(cyclohexy1)_3$ }₂ are AB at -100 °C $P(\eta)$ hex-l-ene $P(\text{cycionesy1})_3f_2$ are Ab at -100 (Pa) and 0 C and below (Pi) [3]. For Pa $(\eta^-$ -nex-1- $\text{energy}(\text{cycionexy1})_{3/2}$, the $\text{cyc}(\text{cycionexy1})_{3/2}$ and $\text{cyc}(\text{cycionexy1})_{3/2}$ 54.2 and $0.51.9$ with $J(T, T) = 36$ Hz at -110 C while for $Pt(\eta^2$ -hex-1-ene) $\{P(cyclohexyl)_3\}_2$, they are δ 41.2, $\hat{J}(195\text{Pt}, 31\text{P}) = 3717 \text{ Hz}$, and δ 38.8, 1 J(195 Pt, 31 P) = 3313 Hz, with 2 J(31 P, 31 P) = 57 Hz at -20 °C. In contrast the ³¹P NMR spectrum of $Ni(\eta^2$ -hex-1-ene) ${P(cyclohexyl)}_3$, is a singlet even at -100 °C. It is possible that the singlet is due to rapid olefin exchange, olefin rotation, or accidental degeneracy. The X-ray structure of $Ni(\eta^2-C_2H_4)_2P$ - $(cyclohexyl)_3$ shows a planar arrangement for the NiPC₄ skeleton [6]. In the case of Ni(η^2 -hex-1-ene)₂- $P(cyclohexyl)_3$, there are six isomers possible, ignoring the duplication of certain isomers due to optical activity. Only one major ³¹P NMR signal is observed with a weak ca. 5%, signal at δ 41.8. It therefore appears that only one of the possible isomers is significantly populated although it is possible that the signal at δ 41.8 is an impurity and the isomers are rapidly interconverting, even at -100° C or are accidently degenerate. UU C or are accidently degenerate.

UNIIKE THE HICKEL CASE, NO $M(\eta)$ -nex-lene)₂-P(cyclohexyl)₃ was detected by ³¹P NMR for M = Pd and Pt by adding an excess of olefin to $M(n^2$ -hex-1ene) $\{P(cyclohexyl)_{3}\}\$, This is consistent with the known tendency of $Ni(0)$ to form more stable olefin complexes than $Pd(0)$ and $Pf(0)$ [2].

Acknowledgements

This work is supported by NATO grant 1052 and this work is

References

1 P. W. Jolly and G. Wilke, 'The Organic Chemistry of P. W. Jolly and G. Wilke, 'The Organic Chemistry of Nickel', Volume, 1, Academic Press, New York and London (1974).

^{*}Authors to whom correspondence should be addressed.

- C A. Tolman W. C. Seid. $Chem$ Soc. 94, 2669 (1972)
- This complex was prepared according to the methgiven by \overline{I} olly *et al* for the preparation of $\overline{Ni(n^2)}$ -olefing $P(\text{cyclohexv1})$ ₂ P. W. Jolly K. Jonas, C. Kr.
- 4 S.O. Grim and W. McFarlane, Canad. J. Chem., 46, 2071 (1968) .
- I. Ge results.
- 6 C. Krüger and Y.-H. Tsay, J. Organometal. Chem., 34, 387 (1972).